
Convex Polytopes Are All You Need
To Defend Your Model

Alberto Hojel∗
UC Berkeley

ahojel@berkeley.edu

Ryan Tabrizi∗
UC Berkeley

rtabrizi@berkeley.edu

Heather Ding∗
UC Berkeley

rtabrizi@berkeley.edu

Abstract

This technical report explores the challenges of adversarial attacks [2] on machine
learning models and evaluates the provable defenses against these attacks. Consid-
ering the many consequences of model vulnerability in applications like healthcare
and autonomous vehicles, it is essential to grasp the nature of these attacks and
what solutions exist. This report focuses primarily on the attacks proposed in [3]
and the provable defense in Wong and Kolter [4]. To better understand these attacks
and defenses, we step through each proof and record justifications along the way.
Altogether, we evaluate and explain adversarial objectives, defensive distillation
[1], L-BFGS [3], and Fast Gradient Signed Method Approximation [2], outlining
the processes of adversarial attacks, defenses, and their implications.

1 Introduction

Recent advancements in machine learning have achieved impressive feats, yet not much research
has been done to ensure that these models work as expected. The consequences of malfunctioning
models are particularly severe in the context of autonomous vehicles and healthcare, for instance.
Moreover, such models can be infiltrated and exploited through what are called adversarial attacks.
Specifically, adversarial examples are designed to invoke atypical behavior in models to undermine
their safety and security. In the context of computer vision, adversarial examples introduced in [2]
and [3] demonstrate how normal they can look to the human eye, yet cause incorrect classifications.

The relevance and importance of adversarial machine learning stem from the ongoing arms race
between researchers who develop methods to strengthen classifiers against known attacks and those
who invent new, more potent attacks capable of bypassing these defenses. This continuous cycle of
attack and defense has driven the field forward but has also exposed the vulnerabilities of even the
most sophisticated machine learning models.

To address these challenges, it is crucial to develop classifiers that are not only resilient to adversarial
perturbations but also provably robust, ensuring that they can withstand attacks even when the
adversary has complete knowledge of the classifier. This level of security is essential in maintaining
the integrity and reliability of machine learning systems, particularly in safety-critical applications.

In this technical report, we build upon the pioneering work of Wong and Kolter (2018) [4], who
proposed an approach for training provably robust deep ReLU classifiers. These classifiers are
designed to be resistant to any norm-bounded adversarial perturbations within the training set,
ensuring that they maintain their performance even in the presence of adversarial attacks. Furthermore,
their method offers a provable technique for detecting any previously unseen adversarial examples
with zero false negatives, although it may erroneously flag some non-adversarial examples.

The crux of Wong and Kolter’s technique lies in constructing a convex outer bound on the "adversarial
polytope" – the set of all final-layer activations achievable by applying a norm-bounded perturbation
to the input. By ensuring that the class prediction of an example remains unchanged within this outer

∗Denotes Equal Contribution.

bound, it is possible to prove that the example cannot be adversarial, as a small perturbation would
not alter the class label.

In this project, we aim to delve deeper into Wong and Kolter’s approach, providing a more accessible
and descriptive explanation of their technique. By building upon their work, we hope to develop
a nuanced overview of their method for training robust ReLU classifiers. Our ultimate goal is to
contribute to the ongoing effort to protect machine learning systems against adversarial attacks,
enhancing their security and reliability in real-world applications.

2 Towards Evaluating the Robustness of Neural Networks

In this work, Carlini and Wagner demonstrate that defensive distilled networks do not successfully
protect against new adversarial attacks they propose.

2.1 Defensive Distillation

Previous work propose defensive distillation as a method to protect against adversarial attacks. A
defensively distilled network is created by the following steps: take an existing neural network, use it
to generate labels using a smoothed version of the softmax loss function, use the new labels to train
on a new version of the same neural network.

2.2 L-BFGS

L-BFGS is a way to generate adversarial examples that successfully fool neural networks and have
been proposed as an attack in previous papers. We formulate the optimization problem as follows:

minimize ∥x− x′∥22
subject to C(x′) = l,

x′ ∈ [0, 1]n.

In this formulation, the objective ∥x− x′∥2 minimizes the Euclidean distance between the original
input and some perturbed input, such that our classifier classifies x′ as some target class l. The box
constraint ensures we still have valid pixel values. In practice, the following optimization problem is
easier to solve for an optimal c > 0 found via line search:

minimize c · ∥x− x′∥22 + lossF,l(x
′)

subject to x′ ∈ [0, 1]n

2.3 Newly Proposed L-2 Attack Algorithm

Carlini and Wagner propose a new L-2 attack method that successfully foils defensively distilled
neural networks that remain visually indistinguishable from the original.

min
w

∥1
2
(tanh(w) + 1)− x∥22 + c · f

(
1

2
(tanh(w) + 1)

)
where f is defined as

f(x′) = max

(
max
i ̸=t

{Z(x′)i : i ̸= t} − Z(x′)t,−κ

)
.

The term inside the L-2 norm minimizes the difference between the real input vector and the perturbed
input vector, while the second term enforces our target class instead of the real class. κ determines
how confident we want to be on our target class, the paper uses 0. Inside the function f, we are
enforcing that after passing through all the layers(Z(x′)) will be forced into class t. We solve this
optimization problem using gradient descent on multiple random starting points similar to the original
vector to prevent getting stuck at a local minimum.

2

2.4 Provable Defenses

We now move on to more recent work by Wong and Kolter that propose a guaranteed defense against
adversarial examples using the convex outer adversarial polytope.

The original optimization problem is nonconvex as the normball with which we define all possible
adversarial attacks becomes nonconvex after undergoing the nonlinearities of the neural netweork.
We see this in figure 1 where the outputed polytope is clearly not convex.

To create a relaxed polytope that is convex, we relax the ReLU activations whose convex hull, as
shown in figure 2, is now convex. In doing so, we can arrive at a convex outer bound as seen in figure
1, which we can then use to prove robustness for different algorithms as we outline in the rest of the
report.

Since the dual lower bounds the primal, we are able to assign scores to certain inputs that flag them
as dangerous or not, as a negative solution to the optimization problem suggests that it has been
classified as not the true class.

3 Deep Neural Network Classifiers

3.1 Generalized Description

A deep neural network classifier is a function that maps an input vector to an output vector corre-
sponding to class probabilities. Mathematically, it is defined by a set of parameters Θ and a family of
classifiers F := {fθ : θ ∈ Θ}. Each classifier fθ ∈ F is a function fθ : Rn → Rm, where n is the
dimension of the input and m is the number of classes. The goal is to find an fθ that produces an
output y⃗pred = fθ(x⃗) that is close to the true label y⃗true according to a loss function.

For a given dataset D, the optimal classifier minimizes the empirical risk function:

min
θ∈Θ

∑
(x⃗,y⃗true)∈D

L (fθ(x⃗), y⃗true) , (1)

where L : Rm × Rm → R is a loss function that compares the model’s prediction fθ(x⃗) to the true
label y⃗.

3.2 Our Network

For this exploration, we will be considering a three-layer feedforward neural network with ReLU
nonlinearity. That is, the network fθ : Rn1 → Rn3 consists of the layers

z⃗1 ∈ Rn1 ,
−→
ẑ 2 ∈ Rn2 , z⃗2 ∈ Rn2 ,

−→
ẑ 3 ∈ Rn3

where z⃗1 = x⃗ is the input for the network and
−→
ẑ 3 is the output of fθ, and the parameters

W1 ∈ Rn2×n1 ,W2 ∈ Rn3×n2 , b⃗1 ∈ Rn2 , b⃗2 ∈ Rn3

which make up the affine transforms between layers. Explicitly, we define
z⃗1

.
= x⃗

−→
ẑ 2

.
= W1z⃗1 + b⃗1

z⃗2
.
= ReLU

(−→
ẑ 2

)
−→
ẑ 3

.
= W2z⃗2 + b⃗2

fθ(x⃗)
.
=

−→
ẑ 3

ReLU (short for Rectified Linear Unit) is defined as

ReLU(z⃗)
.
= max{z⃗,−→0 }

where the maximum is taken elementwise. Note that without the ReLU nonlinearity, the classifier fθ
would simply be a linear function of its input. In the optimization problem 1, we define the parameter
as

θ
.
=
(
W1,W2, b⃗1, b⃗2

)
Hence, Θ .

= Rn2×n1 × Rn3×n2 × Rn2 × Rn3 .

3

4 Finding Adversarial Examples

The adversarial objective is a key concept in understanding the vulnerability of deep neural networks
to adversarial attacks. The goal of an adversary is to find a perturbed input x⃗′ that is close to the
original input x⃗, but results in an incorrect classification by the model. To achieve this, the adversary
aims to maximize the loss function L (fθ (x⃗

′) , y⃗true), where fθ is the deep neural network classifier,
and y⃗true is the true label for x⃗′.

The optimization problem that the adversary tries to solve can be formally expressed as:

max
x⃗′

L (fθ (x⃗
′) , y⃗true) s.t. ∥x⃗− x⃗′∥∞ ≤ ϵ (2)

The constraint ∥x⃗− x⃗′∥∞ ≤ ϵ ensures that the adversarial input x⃗′ is close to the original input
x⃗. Each element in the vector (corresponding to a pixel value in the case of some computer vision
applications) should be no more than ϵ away from the original value (when using an infinity norm
bound). This constraint maintains the visual similarity between x⃗ and x⃗′, making it difficult for
humans to distinguish between the two inputs, while still causing the classifier to make incorrect
predictions.

In summary, the adversarial objective encapsulates the goal of adversaries in crafting perturbed inputs
that are visually indistinguishable from the original inputs but result in incorrect model predictions,
thereby exposing the vulnerability of deep neural networks to adversarial attacks.

4.1 Fast Gradient Signed Method Approximation

One common way to approximate the solution to the adversarial objective is the Fast Gradient Signed
Method (FGSM):

x⃗FGSM = x⃗+ ϵsgn(∇x⃗L(fθ(x⃗), y⃗true)).

This is similar to gradient ascent of the loss with respect to the input, except we only take a single
step and use the sign of the gradient instead of the gradient itself.

The FGSM perturbation is the solution to a first-order approximation of the adversarial optimization
problem, i.e.,

x⃗FGSM = argmax
x⃗′

[
L(fθ(x⃗), y⃗true) + (∇x⃗L(fθ(x⃗), y⃗true))

⊤
x⃗′
]

subject to ∥x⃗− x⃗′∥∞ ≤ ϵ.

(3)

This can become evident through the following proof:

Let x⃗′ = x⃗+ ϵv⃗. The constraint in Equation 3 becomes:

∥x⃗− x⃗− ϵv⃗∥∞ ≤ ϵ

Which can be simplified as follows:
∥x⃗− x⃗− ϵv⃗∥∞ ≤ ϵ,

∥ − ϵv⃗∥∞ ≤ ϵ,

| − ϵ|∥v⃗∥∞ ≤ ϵ,

∥v⃗∥∞ ≤ 1.

The objective function in Equation 3 becomes:

argmax
x⃗+ϵv⃗

[
L(fθ(x⃗), y⃗true) + (∇x⃗L(fθ(x⃗), y⃗true))

⊤
(x⃗′ + ϵv⃗)

]
= argmax

x⃗+ϵv⃗

[
L(fθ(x⃗), y⃗true) + (∇x⃗L(fθ(x⃗), y⃗true))

⊤
x⃗′ + (∇x⃗L(fθ(x⃗), y⃗true))

⊤
ϵv⃗

]
= x⃗+ ϵ argmax

v⃗

[
(∇x⃗L(fθ(x⃗), y⃗true))

⊤
v⃗
]

4

The optimization problem can be rewritten as:

x⃗FGSM = x⃗+ ϵ argmax
v⃗

[
(∇x⃗L(fθ(x⃗), y⃗true))

⊤
v⃗
]
,

subject to ∥v⃗∥∞ ≤ 1.

By dual norm properties, we have

maxv⃗ u⃗
⊤v⃗

s.t. ∥v⃗∥∞ ≤ 1
= ∥u⃗∥1,

where u⃗ = ∇x⃗L(fθ(x⃗), y⃗true). To achieve ∥u⃗∥1, we set

v⃗ = sgn(u⃗) = sgn(∇x⃗L(fθ(x⃗), y⃗true)).

We conclude that

x⃗FGSM = x⃗+ ϵsgn(∇x⃗L(fθ(x⃗), y⃗true)).

By applying the FGSM, we have shown that it is a first-order approximation of the adversarial
objective.

4.2 ℓ2 norm constraints versus ℓ∞

To approximate the ℓ2 norm ball attack, we proceed similarly as the ℓ∞ norm but with the following
constraint:

∥x⃗− x⃗′∥2 ≤ ϵ.

To simplify the constraint, we can use the same trick as before and let x⃗′ = x⃗+ ϵv⃗:

∥x⃗− x⃗− ϵv⃗∥2 ≤ ϵ,

∥ − ϵv⃗∥2 ≤ ϵ,

| − ϵ|∥v⃗∥2 ≤ ϵ,

∥v⃗∥2 ≤ 1.

To simplify the objective function, we again proceed as earlier, the objective function can be simplified
to:

x⃗FGSM = x⃗+ ϵ argmax
v⃗

[
(∇x⃗L(fθ(x⃗), y⃗true))

⊤
v⃗
]
,

subject to ∥v⃗∥2 ≤ 1.

Since to maximize the dot product between two vectors we want them in the same direction, we
obtain the following for v⃗:

v⃗ =
∇x⃗L(fθ(x⃗), y⃗true)

∥∇x⃗L(fθ(x⃗), y⃗true)∥2

It follows then that:

x⃗FGSM = x⃗+
ϵ

∥∇x⃗L(fθ(x⃗), y⃗true)∥2
∇x⃗L(fθ(x⃗), y⃗true).

5

5 Rewriting the Adversary’s Optimization Problem

We reformulate the adversarial problem as follows:

minz⃗ c⃗⊤
−→
ẑ 3

s.t. ∥z⃗1 − x⃗∥∞ ≤ ϵ
−→
ẑ 2 = W1z⃗1 + b⃗1

z⃗2 = ReLU
(−→
ẑ 2

)
−→
ẑ 3 = W2z⃗2 + b⃗2

(4)

Here, we define the objective function as c⃗⊤
−→
ẑ 3, where c⃗ = y⃗true−y⃗targ. Both y⃗true and y⃗targ are one-hot

vectors corresponding to the ground truth and adversarial label respectively. The objective function
computes the difference between the classifier’s scores assigned to the true class and the target
class. If the adversary can make this objective negative, then the adversarial example’s activation is
higher than that of the ground truth, and the classifier will assign higher probability to the adversarial
example. Furthermore, we only need to find one such adversarial example for a successful attack on
the network.

It is important to note the slight abuse of notation in, where we use minz⃗ as shorthand for
min

z⃗1,̂⃗z2,z⃗2,̂⃗z3
. This convention is maintained throughout the document to avoid clutter.

5.1 Primal Modification for Guaranteeing Target Classification

As stated earlier, a successful attack occurs when the objective value in (4) is negative. Perhaps the
adversary wants to output a specific y⃗targ rather than simply preventing y⃗true. In this case, we can
solve the following optimization problem:

minz⃗ (y⃗i − y⃗targ)
⊤−→ẑ 3 ∀i ̸= target

s.t. ∥z⃗1 − x⃗∥∞ ≤ ϵ
−→
ẑ 2 = W1z⃗1 + b⃗1

z⃗2 = ReLU
(−→
ẑ 2

)
−→
ẑ 3 = W2z⃗2 + b⃗2

(5)

Now, the activation corresponding to the target adversarial example is greater than that of all other
classes, not only y⃗true. In doing so, we guarantee y⃗targ as the predicted output. We can formulate this
in standard form:

minz⃗ 1⃗⊤s⃗
s.t. ∥z⃗1 − x⃗∥∞ ≤ ϵ

−→
ẑ 2 = W1z⃗1 + b⃗1

z⃗2 = ReLU
(−→
ẑ 2

)
−→
ẑ 3 = W2z⃗2 + b⃗2

(y⃗i − y⃗targ)
⊤−→ẑ 3 ≤ s⃗i ∀i ̸= targ

(6)

6 The Adversarial Polytote

We define the adversarial polytote Zϵ(x), which is the set of all final-layer activations attainable by
perturbing input x with a change ∆ of bounded ℓ∞ norm ϵ:

Zϵ(x) = {fθ(x+∆) : ∥∆∥∞ ≤ ϵ}. (7)

Optimizing over Zϵ(x) for multi-layer networks with non-linearities like ReLU is challenging
because the set is non-convex as we see in figure 1. To address this issue, Wong and Kolter’s work

6

Figure 1: The non-convex adversarial polytope and its corresponding convex outer bound as shown
in [4].

[4] constructs a convex outer bound on the adversarial polytope. If one can prove that no point within
this bound can change the model’s prediction, then we guarantee that this example is not adversarial.
In a sense, we consider all perturbations near the bounds of the non-convex polytope, as adversarial
examples will often reside near these bounds. Ultimately, we will train a network to optimize the
worst-case loss over this convex outer bound, thus enabling the application of robust optimization
techniques despite the classifier’s non-linearity.

Figure 2: The convex relaxation of the ReLU non-linearity from [4].

To construct the convex outer bound, we start with a linear relaxation of the ReLU activations as
proposed in [4]. Given known lower and upper bounds l and u for the pre-ReLU activations, we
replace the ReLU equalities z = max{0, ẑ} with their upper convex envelopes:

z ≥ 0, z ≥ ẑ, −uẑ + (u− l)z ≤ −ul.

We then analyze the relaxed constraint z⃗2 = ReLU(
−→
ẑ 2) on a case-by-case basis, utilizing the upper

and lower bounds uj and lj for each ẑ2j . For each j ∈ {1, . . . , n2}, we introduce the convex hull Zj

of the original constraint:

Zj
.
= conv(Ẑj) = conv

({
(z2j , ẑ2j) ∈ R× R |

z2j = ReLU (ẑ2j) ∧ lj ≤ ẑ2j ≤ uj

}) (8)

We consider three cases:

1. If lj ≤ uj ≤ 0, the ReLU constraint is equivalent to fixing z2j = 0. Thus, Ẑj is already convex,
and we can define:

Zj = Ẑj = {(z2j , ẑ2j) ∈ R× R | z2j = 0}

7

2. If 0 ≤ lj ≤ uj , we have z2j = ẑ2j , so:

Zj = Ẑj = {(z2j , ẑ2j) ∈ R× R | z2j = ẑ2j}

3. In the third case, Ẑj is no longer convex. Its convex hull is a triangle, given by:

Zj =

{
(z2j , ẑ2j) ∈ R× R | z2j ≥ 0 ∧ z2j ≥ ẑ2j

∧ −uj ẑ2j + (uj − lj) z2j ≤ −uj lj

} (9)

By exploiting the upper and lower bounds of the ReLU and the convex hull of the original constraint,
we transform the non-convex problem into a convex one. This allows us to reason about the adversarial
polytope bound and prove robustness through the problem’s convexity.

6.1 Relaxation of the Adversary’s Optimization Problem

Our relaxation of the problem (4) is thus

p∗(x⃗, c⃗) = minz⃗ c⊤
−→
ẑ 3

s.t. ∥z⃗1 − x⃗∥∞ ≤ ϵ
−→
ẑ 2 = W1z⃗1 + b⃗1
(z2j , ẑ2j) ∈ Zj ∀j ∈ {1, . . . , n2}−→
ẑ 3 = W2z⃗2 + b⃗2

Note that since the feasible set of the relaxation is a superset of the original, the relaxed optimum is a
lower bound for the original optimum. If we can prove robustness in the relaxed problem, then we
have also proved robustness for the original problem.

6.2 Dualizing the Adversary’s Optimization Problem

Although the relaxed adversarial optimization problem is convex and thus solvable, here we will
show that the dual problem is much easier to solve and thus preferable. In this subpart we will give
in-depth steps on finding the dual optimization problem.

6.2.1 Re-expressing the convex relaxation

p∗(x⃗, c⃗) = minz⃗ c⊤
−→
ẑ 3

s.t. ∥z⃗1 − x⃗∥∞ ≤ ϵ
−→
ẑ 2 = W1z⃗1 + b⃗1
(z2j , ẑ2j) ∈ Zj ∀j ∈ {1, . . . , n2}−→
ẑ 3 = W2z⃗2 + b⃗2

Let the constraint: ∥z⃗1 − x⃗∥∞ ≤ ϵ become:

1Bϵ
(z⃗1) =

{
0 −→z1 st ∥−→z1 − x⃗∥∞ ≤ ϵ
∞ otherwise

Let the constraint: (z2j , ẑ2j) ∈ Zj ∀j ∈ {1, . . . , n2} become

1zj (z2j , ẑ2j) =

{
0 (z2j , ẑ2j) ∈ zj
∞ otherwise

Since the minimum objective will never choose ∞ for these two functions, the minimization problem
becomes:

8

p∗(x⃗, c⃗) = minz⃗ c⊤
−→
ẑ 3 + 1Bϵ

(z⃗1) + 1zj (z2j , ẑ2j)

s.t.
−→
ẑ 2 = W1z⃗1 + b⃗1−→
ẑ 3 = W2z⃗2 + b⃗2

(10)

6.2.2 Deriving the Lagrangian

Although the primal problem (10) can be computed with modern solvers, the input and hidden layers
in classification problems can become very large and increase compute. To mitigate this, we can
solve this problem through duality. We proceed with finding the Lagrangian:

L(z⃗, ν⃗) =c⃗⊤
−→
z⃗ 3 + 1Bϵ(x⃗) (z⃗1) +

n2∑
j=1

1Zj
(z2j , ẑ2j)

+ v⃗3
⊤(ˆ⃗z3 −W2z⃗2 − b⃗2) + v⃗2

⊤(ˆ⃗z2 −W1z⃗1 − b⃗1)

=c⃗⊤
−→
z⃗ 3 + 1Bϵ(x⃗) (z⃗1) +

n2∑
j=1

1Zj (z2j , ẑ2j)

+ v⃗⊤3
ˆ⃗z3 − v⃗⊤3 W2z⃗2 − v⃗⊤3 b⃗2

+ v⃗⊤2
ˆ⃗z2 − v⃗⊤2 W1z⃗1 − v⃗⊤2 b⃗1

Where v⃗2 corresponds with the first constraint and v⃗3 corresponds with the second.

L(z⃗, ν⃗) =c⃗⊤
−→
z⃗ 3 + ν⃗⊤3

−→
ẑ 3 + 1Bϵ(x⃗) (z⃗1)− ν⃗⊤2 W1z⃗1

+

 n2∑
j=1

1Zj (z2j , ẑ2j)− ν⃗⊤3 W2z⃗2 + ν⃗⊤2
−→
ẑ 2

−
2∑

i=1

ν⃗⊤i+1b⃗i.

6.2.3 Concluding with the Dual

Remember our "abuse of notation earlier". When we minimize over z⃗ we are in actuality minimizing
over z⃗1, z⃗2, z⃗3, ˆ⃗z1, ˆ⃗z2, ˆ⃗z3 By collecting like terms we can simplify as follows:

g (ν⃗2, ν⃗3)
.
=min

z⃗
L(z⃗, ν⃗)

=min−→
z⃗

(c⃗⊤
−→
z⃗ 3 + ν⃗⊤3

−→
ẑ 3 + 1Bϵ(x⃗) (z⃗1)− ν⃗⊤2 W1z⃗1

+

 n2∑
j=1

1Zj (z2j , ẑ2j)− ν⃗⊤3 W2z⃗2 + ν⃗⊤2
−→
ẑ 2

−
2∑

i=1

ν⃗⊤i+1b⃗i)

=min−→z3

(
(c⃗+ ν⃗3)

⊤ −→
z⃗ 3

)
+min

z⃗1

(
1Bϵ(x⃗) (z⃗1)− ν⃗⊤2 W1z⃗1

)
+

 n2∑
j=1

min
z2j ,ẑ2j

(
1Zj (z2j , ẑ2j)− ν⃗⊤3 (W2)j z2j + ν2j ẑ2j

)
−

2∑
i=1

ν⃗⊤i+1b⃗i

(11)

6.2.4 The Full Dual Problem

In this section, we will derive the Lagrangian dual in a simplified format, leveraging Fenchel
conjugates. Looking at equation 11, we will simplify each minimization into a Fenchel conjugate or
convert it into a constraint.

9

We have:
min
z⃗1

(
1Bε(x⃗) (z⃗1)− ν⃗⊤2 W1z⃗1

)
= − sup

z⃗1

(
ν⃗⊤2 W1z⃗1 − 1Bε(x⃗) (z⃗1)

)
= −1∗

Bε

(
W⊤

1 ν⃗2
)

And we have:
n2∑
j=1

min
z2j , ˆz2j

(
1Zj

(z2j , ẑ2j)− ν⃗⊤3 (W2)j z2j + ν2j ẑ2j

)
=

n2∑
j=1

− sup
z2j , ˆz2j

(
ν⃗⊤3 (W2)j z2j − ν2j ẑ2j − 1Zj (z2j , ẑ2j)

)
=

n2∑
j=1

−1∗
Zj

(
ν⃗⊤3 (W2)j ,−ν2j

)
Hence, our full Lagrangian dual can be written as:

d∗(x⃗, c⃗) = max
ν⃗

min
z⃗

L(z⃗, ν⃗) = max
ν⃗

[
min−→z3

(
(c⃗+ ν⃗3)

⊤ −→
z⃗ 3

)
+min

z⃗1

(
1Bϵ(x⃗) (z⃗1)− ν⃗⊤2 W1z⃗1

)
+

 n2∑
j=1

min
z2j ,ẑ2j

(
1Zj

(z2j , ẑ2j)− ν⃗⊤3 (W2)j z2j + ν2j ẑ2j

)−
2∑

i=1

ν⃗⊤i+1b⃗i

]

= max
ν⃗

[
−1∗

Bε
(W⊤

1 ν⃗2) +

n2∑
j=1

−1∗
Zj

(
ν⃗⊤3 (W2)j ,−ν2j

)
−

2∑
i=1

ν⃗⊤i+1b⃗i

]
s.t. ν⃗3 = −⃗c

7 Training a Robust Classifier

In this section, we describe the process of upper-bounding the loss function, the motivation behind
this approach, and the methodology used to achieve it. This technique is crucial for enabling efficient
robust optimization, particularly when training deep neural networks that are provably robust to
adversarial examples.

The primary motivation behind upper-bounding the loss function is to facilitate the training of deep
nonlinear classifiers in a robust optimization framework. In the context of adversarial attacks, we
aim to minimize the worst-case loss due to some ϵ-perturbation of the original training input. By
upper-bounding the hard loss function with a more tractable form, we can leverage standard gradient
descent techniques to train a model that is significantly more robust to adversarial perturbations
compared to those trained using the original loss function L.

7.1 Monotonic Loss Functions

A multi-class loss function L : Rm × Rm −→ R is: monotonic if for all input y⃗, y⃗′ such that
yi ≤ y′i for indices i corresponding to incorrect classes (i.e. i ̸= itrue), and yitrue ≥ y′itrue

, we have
L (y⃗, y⃗true) ≤ L (y⃗′, y⃗true)

7.2 Translation-invariant Loss Functions

A multi-class loss function L : Rm × Rm −→ R is translation-invariant if for all a ∈ R,

L (y⃗, y⃗true) = L (y⃗ − a1, y⃗true)

10

7.3 Upper Bounding

The upper bounding technique displayed in this section is generalized to a multi-layer deep neural
classifier where ẑk represents the output of the last layer.

We consider a monotonic, translation-invariant multi-class loss function L : R|y| × R|y| → R. For
any data point (x, y) and ϵ > 0, we can upper-bound the worst-case adversarial loss as follows:

We start by expressing the loss of the worst-case adversarial attack using the adversarial polyptote:

max
∥∆∥∞≤ϵ

L (fθ(x+∆), y) = max
ẑk∈Zϵ(x)

L (ẑk, y)

We now apply a mixture of the translation-invariance and monotonicity of the loss function. Since
L(x, y) ≤ L(x− a1, y) for all a, we can re-write the worst-case adversarial loss as follows:

max
ẑk∈Zϵ(x)

L (ẑk, y) ≤ max
ẑk∈Zϵ(x)

L
(
ẑk − (ẑk)y 1, y

)
= max

ẑk∈Zϵ(x)
L
((
I − ey1

T
)
ẑk, y

)
= max

ẑk∈Zϵ(x)
L (Cẑk, y)

where C =
(
I − ey1

T
)
.

Furthermore, since L is a monotone loss function, we can upper bound the loss further by using the
element-wise maximum over [Cẑk]i for i ̸= y, and element-wise minimum for i = y. Specifically,
we bound it as:

max
ẑk∈Zϵ(x)

L (Cẑk, y) ≤ L (h (ẑk))

Where Ci is the i th row of C and h (zk) is defined element-wise as:

h (zk)i = max
ẑk∈Zϵ(x)

Ciẑk

The above expression is equivalent to the adversarial problem in its maximization form. Recall that J
from (INSERT REFERENCE) is a lower bound on (INSERT REFERENCE) (using c = −Ci):

Jϵ (x, gθ (−Ci)) ≤ min
ẑk∈Zϵ(x)

−CT
i ẑk

By multiplying both sides of the inequality by -1, we get the following upper bound:

−Jϵ (x, gθ (−Ci)) ≥ max
ẑk∈Zϵ(x)

CT
i ẑk

Applying this upper bound to h (zk)i, we conclude:

h (zk)i ≤ −Jϵ (x, gθ (−Ci))

By applying the upper bound to all elements of h, we obtain the final upper bound on the adversarial
loss:

max
∥∆∥∞≤ϵ

L (fθ(x+∆), y) ≤ L
(
−Jϵ

(
x, gθ

(
ey1

T − I
))

, y
)

Using the derived upper bound, we can formulate an efficient optimization approach for training
provably robust deep networks. Given a dataset (xi, yi)i=1,...,N , we minimize the bound on the worst
location (i.e., with the highest loss) in an ϵ-ball around each xi. The resulting optimization problem
can be solved more easily. Consequently, we obtain a network that is guaranteed to be robust to
adversarial examples if we achieve low loss.

This methodology provides a foundation for developing provably robust deep networks, an essential
step towards addressing the vulnerability of deep learning models to adversarial attacks.

11

8 Future Work

To provide a better intuition behind how the convex outer bound provably defends against adversarial
attacks, we would like to have included a visualization as follows: the user could drag their cursor
over the various norms within a defined norm ball that we’ve seen in the BFGS formulation, as well
as the corresponding output in the convex outer bound. This will be worked on in the months to
come.

References
[1] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks.

CoRR, abs/1608.04644, 2016.

[2] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. International Conference on Learning Representations, 2015.

[3] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2014.

[4] Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope. In International Conference on Machine Learning, pages 5283–5292.
PMLR, 2018.

9 Appendix

9.1 Defining Fenchel Conjugates

Throughout this paper, some Fenchel conjugates are leveraged to simplify notation. This section will
include the derivations of those Fenchel conjugates.

For any function f : Rn → R, we define a Fenchel conjugate f∗ : Rn → R by

f∗(y⃗) = sup
x⃗

{
y⃗⊤x⃗− f(x⃗) | x⃗ ∈ Rn

}
This allows us to define f∗ as a pointwise supremum of affine functions y⃗ 7→ y⃗⊤x⃗ − f(x⃗), which
ensures that f∗(y⃗) is convex in y⃗. In particular, the Fenchel conjugate is useful when formulating
dual problems.

9.2 Fenchel conjugate of Absolute Value

To better understand the Fenchel conjugate, we consider a scalar example. Suppose f : R → R, and
f(x) = |x|. We can find f∗(y) by casework.

First, we consider the case in which y < −1:

f∗(y) = sup
x

{xy − |x| | x ∈ R, y < −1}

=⇒ f∗(y) = sup
x

{xy − f(x) | x ∈ R, y < −1}

Then as x → −∞ for some y < −1, xy takes on a positive value greater than |x| and xy − |x|
approaches ∞. Thus, f∗(y) = ∞ for y < −1

For y = −1, we observe that xy − |x| is precisely 0 as x → −∞ since xy is effectively |x| for
y = −1 and a negative x. For x → ∞, on the other hand, we get an increasingly negative value.
Thus, f∗(y) = 0 for y = −1.

We see that for −1 < y < 1, xy will only be a fraction of |x| and can never exceed 0 and is strictly
equal to 0 when x = 0. Thus, f∗(y) is also 0 in this case.

By symmetry, we can say that f∗(y) = 0 for y = 1 as x → ∞, as well as that f∗(y) = ∞ for y > 1
as x → ∞

12

9.3 Fenchel conjugate of L1 Norm

Now, suppose g : Rn → R and g(x⃗) = ∥x⃗∥1. Find g∗(y⃗).

g(x) = ∥x∥ℓ1 =

n∑
i=1

|xi|

g∗(y⃗) = sup
x⃗

{
y⃗⊤x⃗− f(x⃗) | x⃗ ∈ Rn

}
= sup

x⃗

{
n∑

i=1

yixi −
n∑

i=1

|xi| | x⃗ ∈ Rn

}

= sup
x⃗

{
n∑

i=1

(yixi − |xi|) | x⃗ ∈ Rn

}

=

n∑
i=1

sup
xi

{(yixi − |xi|) |i∈ R}

=

n∑
i=1

f∗(yi)

Where we have already solved for f∗(yi) above in part B. If any of the yi is greater than 1 or less
than -1, our g∗(y⃗) is pushed to infinity, otherwise it is equal to 0.

9.4 Fenchel conjugate of Indicator Functions

Define the indicator function:

1Bϵ(x⃗)(v⃗)

{
0 z⃗ ∈ Bϵ(x⃗)

+∞ otherwise

Where z⃗ ∈ Bϵ(x⃗) if z⃗ : ∥z⃗ − x⃗∥∞ ≤ ϵ

Solving for the Fenchel congugate of that indicator function:

1Bϵ(x⃗)(v⃗) = sup
z⃗

{
v⃗⊤z⃗ − 1Bϵ(x⃗)(z⃗) | z⃗ ∈ Rn

}
= sup

z⃗∈Bϵ(x⃗)

{
v⃗⊤z⃗ | z⃗ ∈ Rn

}
= sup

z⃗:∥z⃗−x⃗∥∞≤ϵ

{
v⃗⊤z⃗ | z⃗ ∈ Rn

}
= sup

z⃗:∥z⃗−x⃗∥∞≤ϵ

{
v⃗⊤z⃗ + v⃗⊤x⃗− v⃗⊤x⃗ | z⃗ ∈ Rn

}
= v⃗⊤x⃗+ sup

z⃗:∥z⃗−x⃗∥∞≤ϵ

{
v⃗⊤(z⃗ − x⃗) | z⃗ ∈ Rn

}
= v⃗⊤x⃗+ ϵ∥v⃗∥1

The last step follows since the L1 and L∞ norms are duals:

9.5 Fenchel conjugate of 1zj

In this section we will derive the fenchel conjugate of the characteristic function of the set zj . We
approach through a case-by-case basis.

9.5.1 Case 1

We will show that when lj ≤ uj ≤ 0:

13

1∗
Zj
(ν̂,−ν) =

{
0 if ν = 0

+∞ otherwise

If lj ≤ uj ≤ 0 ⇒ ẑ2j ≤ 0 and the ReLU constraint is equivalent to fixing z2j = 0. Hence, Ẑj is
already convex:

Zj = Ẑj = {(z2j , ẑ2j) ∈ R× R | z2j = 0}

Re-written as:

Zj = {(ν, ν̂) | ν = 0}

With the definition of the characteristic function 1S for any set S as

1S(x)
.
=

{
0 x ∈ S

+∞ otherwise

We define:

1Zj
(ν̂,−ν) =

{
0 if (ν, ν̂) ∈ Zj

+∞ otherwise
=

{
0 if ν = 0

+∞ otherwise

We recall the definition of a Fenchel conjugate as:

f∗(y⃗) = sup
x⃗

{
y⃗⊤x⃗− f(x⃗) | x⃗ ∈ Rn

}
Now, we compute the Fenchel conjugate of 1Zj

:

1∗
Zj
(v̂,−v) = sup

x,x̂

{
(v̂,−v)⊤(x, x̂)− 1Zj (x, x̂)

}
= sup

x,x̂

{
v̂⊤x̂− v⊤x− 1Zj (x, x̂)

}
If x /∈ Zj , then 1Zj

(x, x̂) = ∞, and the supremum is −∞. Therefore, we can restrict the supremum
to (x, x̂) ∈ Zj with x = 0:

1∗
Zj
(v̂,−v) = sup

x̂

{
(v̂,−v)⊤(0, x̂)− 1Zj

(0, x̂)
}

= sup
x̂

{
(v̂,−v)⊤(0, x̂)

}
because 1Zj

(0, x̂) = 0

= sup
x̂

{
v̂⊤x̂− v⊤0

}
= sup

x̂

{
v̂⊤x̂

}
Now, we can analyze the supremum:

1∗
Zj
(v̂,−v) =

{
0 if v = 0

+∞ otherwise

This result proves that 1∗
Zj
(ν̂,−ν) satisfies the given condition when lj ≤ uj ≤ 0.

14

9.5.2 Case 2

We now approach the next case, when 0 ≤ lj ≤ uj :

If 0 ≤ lj ≤ uj , then ẑj ≥ 0. Therefore, zj = ẑj and Zj is already convex:

Zj = Ẑj = {(zj , ẑj) ∈ R× R | zj = ẑj}

Re-written as:

Zj = {(ν, ν̂) | ν = ν̂}

Therefore, we have:

1Zj
(ν, ν̂) =

{
0 if (ν, ν̂) ∈ Zj

+∞ otherwise
=

{
0 if ν = ν̂

+∞ otherwise

We will now analyze 1∗
Zj
(ν̂,−ν)

1∗
Zj
(ν̂,−ν) = sup

x,x̂

{
(ν̂,−ν)⊤(x, x̂)− 1Zj (x, x̂)

}
If x ̸= x̂, then (x, x̂) /∈ Zj , and 1Zj

(x, x̂) = +∞:

(ν̂,−ν)⊤(x, x̂)− 1Zj
(x, x̂) = −∞

We can upper-bound by restricting (x, x̂) ∈ Zj ⇒ x = x̂:

1∗
Zj
(ν̂,−ν) = sup

x

{
(ν̂,−ν)⊤(x, x)− 1Zj

(x, x)
}

= sup
x

{
(ν̂,−ν)⊤(x, x)

}
because 1Zj

(x, x) = 0

= sup
x

{
ν̂⊤x− ν⊤x

}
= sup

{
(ν̂ − ν)⊤x

}
=

{
0 ν = ν̂

+∞ otherwise

Hence, when 0 ≤ lj ≤ uj :

1∗
Zj
(ν̂,−ν) =

{
0 if ν = ν̂

+∞ otherwise

9.5.3 Case 3

Finally, we approach the next case, when lj ≤ 0 ≤ uj :

1∗
Zj
(ν̂,−ν) ≤

{
ReLU (−ljν) ν =

ν̂uj

uj−lj

+∞ otherwise.

Show that when lj ≤ 0 ≤ uj :

1∗Zj
(ν̂,−ν̂) ≤

{
ReLu (−ljν) ν =

ν̂uj

uj−lj

+∞ otherwise

15

If lj ≤ 0 ≤ uj : Ẑj is no longer convex. Examining this set visually, it is clear that its convex hull is
a triangle, given by

Zj = {(z2j , ẑ2j) ∈ R× R |
z2j ≥ 0 ∧ z2j ≥ ẑ2j∧
− uj ẑ2j + (uj − lj)z2j ≤ −uj lj}

(12)

Note that the inequality
−uj ẑ2j + (uj − lj) z2j ≤ −uj lj

defines the upper boundary of the triangle, i.e. the line going through (lj , 0) and (uj , uj).

Similar to the previous parts, we can reason that the supremum will be achieved when the characteristic
function outputs a value of 0 ((zj , ẑj) ∈ Zj):

1∗Zj
(ν̂,−ν) = sup

x,x̂

{
(ν̂,−ν)⊤(x, x̂)− 1zj (x, x̂)

}
if x /∈ Zj then 1zj (x, x̂) = ∞
(ν̂,−ν)⊤(x, x̂)− 1zj (x, x̂) = −∞

Now, we want to find an upper bound for 1∗
Zj
(ν̂,−ν) given the following constraints:

1∗
Zj
(ν̂,−ν) = sup

(x,x̂)∈Zj

{
(ν̂,−ν)⊤(x, x̂)

}
Since the optimum of a linear program can always be attained at one of the vertices of the feasible
polytope, we only need to consider the vertices of the triangle in Zj . These vertices are (lj , 0), (0, 0),
and (uj , uj). Let’s evaluate the inner product at each vertex:

At (0, 0):
(ν̂,−ν)⊤(0, 0) = 0

Now, to analyze the (lj , 0) and (uj , uj) that are vertices of the feasible region we will look at the
whole line between the points (lj , 0) and (uj , uj) which trivially include the points as well:

−uj x̂+ (uj − lj)x = −uj lj

Solving for x:

x =
uj x̂− uj lj
uj − lj

Now, let’s plug the expression for x into the supremum:

(ν̂,−ν)⊤(x, x̂) = (ν̂,−ν)⊤
(
uj x̂− uj lj
uj − lj

, x̂

)
Expanding the inner product, we get:

(ν̂,−ν)⊤
(
uj x̂− uj lj
uj − lj

, x̂

)
= ν̂

uj x̂− uj lj
uj − lj

− νx̂

Now, we want to find the value of x̂ that maximizes this expression. To do this, we can take the
derivative with respect to x̂ and set it equal to zero:

d

dx̂

(
ν̂
uj x̂− uj lj
uj − lj

− νx̂

)
= 0

16

Calculating the derivative, we get:

d

dx̂

(
ν̂
uj x̂− uj lj
uj − lj

− νx̂

)
=

ν̂uj

uj − lj
− ν

Setting the derivative equal to zero:

ν̂uj

uj − lj
− ν = 0

Solving for ν, we obtain:

ν =
ν̂uj

uj − lj

Now, we substitute this value of ν into the expression for the inner product to get the upper bound:

(ν̂,−ν)⊤
(
uj x̂− uj lj
uj − lj

, x̂

)
= ν̂

uj x̂− uj lj
uj − lj

− ν̂uj

uj − lj
x̂

=
ν̂uj x̂

uj − lj
− ν̂uj x̂

uj − lj
− ν̂uj lj

uj − lj

= − ν̂uj lj
uj · lj

= −νlj (13)

Hence, on the line that represents the upper bound of the triangle, and when the derivative of the
Fenchel Conjugate is set to zero:

ν =
ν̂uj

uj − lj

and
1∗
Zj
(ν̂,−ν) = −νlj

Given that −ljv ≤ ReLU(−ljv):

1∗
Zj
(ν̂,−ν) ≤

{
ReLU (−ljν) ν =

ν̂uj

uj−lj

+∞ otherwise

Thus, we have shown that when lj ≤ 0 ≤ uj , the given inequality holds.

9.6 Finding ReLU bounds −→u and lj

The dual problem from above assumed we have u⃗ and l⃗ in order to compute the relaxation on the
ReLU non-linearity. To compute these bounds, we define the following notation for any matrix W
with rows w⃗⊤

1 , . . . , w⃗
⊤
k :

∥W∥:1
.
= [∥w⃗1∥1 , . . . , ∥w⃗k∥1]

⊤

From our setup in section 6, we define the upperbound uj of ẑ2j as

uj = max ẑ2j

s.t. ẑ2j =
(
W1z⃗1 + b⃗1

)
j

∥z⃗1 − x⃗∥∞ ≤ ϵ

(14)

17

=⇒ uj = max
(
W1z⃗1 + b⃗1

)
j

s.t. ∥z⃗1 − x⃗∥∞ ≤ ϵ

=⇒ uj = max w⃗⊤
1,j z⃗1 + b1,j

s.t. ∥z⃗1 − x⃗∥∞ ≤ ϵ

=⇒ uj = w⃗⊤
1,j x⃗+max w⃗⊤

1,j z⃗1 + b1,j − w⃗⊤
1,j x⃗

s.t. ∥z⃗1 − x⃗∥∞ ≤ ϵ

=⇒ uj = w⃗⊤
1,j x⃗+ b1,j +max w⃗⊤

1,j (z⃗1 − x⃗)

s.t. ∥z⃗1 − x⃗∥∞ ≤ ϵ

=⇒ uj = w⃗⊤
1,j x⃗+ b1,j +max w⃗⊤

1,j (z⃗1 − x⃗)

s.t. ∥z⃗1 − x⃗∥∞ ≤ ϵ

=⇒ uj = w⃗⊤
1,j x⃗+ b1,j + ϵ∥w⃗1,j∥1

Where the second to last implication follows from l∞ and l1 being dual norms. We can generalize for
all uj in u⃗:

u⃗ = W1x⃗+ b⃗1 + ϵ∥W1∥:1 (15)

as well as all lj in l⃗

l⃗ = W1x⃗+ b⃗1 − ϵ∥W1∥:1 (16)

where we use −ϵ since an arbitrary lj will be the minimum of our original formulation shown in (14)
instead of maximum.

More thoroughly,

lj = min ẑ2j

s.t. ẑ2j =
(
W1z⃗1 + b⃗1

)
j |z⃗1 − x⃗|∞ ≤ ϵ

(17)

=⇒ lj = min w⃗⊤
1,j z⃗1 + b1,j

s.t. |z⃗1 − x⃗|∞ ≤ ϵ

=⇒ lj = min w⃗⊤
1,j x⃗+ w⃗⊤

1,j (z⃗1 − x⃗) + b1,j − w⃗⊤
1,j x⃗

s.t. |z⃗1 − x⃗|∞ ≤ ϵ

=⇒ lj = w⃗⊤
1,j x⃗+min w⃗⊤

1,j (z⃗1 − x⃗) + b1,j

s.t. |z⃗1 − x⃗|∞ ≤ ϵ

=⇒ lj = w⃗⊤
1,j x⃗+min w⃗⊤

1,j (z⃗1 − x⃗)

s.t. |z⃗1 − x⃗|∞ ≤ ϵ− b1, j/|w⃗1,j |1

=⇒ lj = w⃗⊤
1,j x⃗− ϵ|w⃗1,j |1 + b1, j

18

	Introduction
	Towards Evaluating the Robustness of Neural Networks
	Defensive Distillation
	L-BFGS
	Newly Proposed L-2 Attack Algorithm
	Provable Defenses

	Deep Neural Network Classifiers
	Generalized Description
	Our Network

	Finding Adversarial Examples
	Fast Gradient Signed Method Approximation
	2 norm constraints versus

	Rewriting the Adversary's Optimization Problem
	Primal Modification for Guaranteeing Target Classification

	The Adversarial Polytote
	Relaxation of the Adversary's Optimization Problem
	Dualizing the Adversary's Optimization Problem
	Re-expressing the convex relaxation
	Deriving the Lagrangian
	Concluding with the Dual
	The Full Dual Problem

	Training a Robust Classifier
	Monotonic Loss Functions
	Translation-invariant Loss Functions
	Upper Bounding

	Future Work
	Appendix
	Defining Fenchel Conjugates
	Fenchel conjugate of Absolute Value
	Fenchel conjugate of L1 Norm
	Fenchel conjugate of Indicator Functions
	Fenchel conjugate of 1zj
	Case 1
	Case 2
	Case 3

	Finding ReLU bounds and lj

