
Developing a
Wearable Internet of
Things (IoT)
Platform for Gait
Classification
Written by: Kavin Balakrishnan,
Arunan Elamaran, Michael Davydov,
Ryan Tabrizi, Keshav Vyas

Introduction

Upon introduction to the
STMicroelectronics© 32-bit chips and learning the
basics of signal processing, machine learning, and
data science, our team developed an algorithm to
classify various walking motions.

Abstract

We have developed a gait classification
system through using MATLAB’s graphing
analysis features and STMicroelectronics'
SensorTile Platform under the guidance of UCLA
professor William Kaiser. The system can
distinguish stand still, neutral walking, stair ascent,
and stair descent as the four primary gaits. The
system requires the user to walk a certain distance
over a calibration period. The extracted values are
utilized in acquiring features from the sensor data.
The features for the algorithm will be selected
from normalized accelerometer and gyroscope
data.

Rig Setup

The “rig” was the most crucial physical
aspect. We needed to establish a reliable,
consistent platform to hold the ST board firmly in
place. The rig was used for both data acquisition
(getting data so we can analyze it) and the testing
of our algorithm. In addition, to get the best
results, a relatively upright position with minimal
cushioning was preferable, as to prevent the
dampening of any jerks in the motions that could
serve as potential features. Additionally, we
wanted to ensure that the SensorTile’s sensors
could pick up the forces and vibrations of gait with
a measure of the highest quality for easier
processing and feature decision making. Our first
model involved placing the system into a fanny
pack, and stuffing it with rags and other material to
prevent the system from shifting. Later, to increase
accuracy, we assembled a rig using an old belt,
attached by screws, to a block of styrofoam. We
poked holes in this styrofoam block to
accommodate the end pins of the SensorTile and
its main board. By fitting it in the block and using
tape to bind these parts together, we were left with
what we considered sturdy and reliable hardware.
It ended up lasting us the entire way without
failure. Pictures of the rig are shown in figures 2-4.

Data Acquisition

An STMicroelectronics© 32 chip, along
with a nucleo board and sensortile, was initially
coded to output several values: time count, the
gyroscope x values, gyroscope y values,
gyroscope z values, accelerometer x values,
accelerometer y values, and accelerometer z
values. The team chose to focus on classifying 3
main motions: normal walk, stair ascent, and stair
descent.

To record the data, we used the program
Putty, which served as our console to system
workbench and converted values into a CSV
format as well as a modified program from the
“E96C: Internet of Things” course from UCLA



that monitored gyroscope and accelerometer
values on the SensorTile. To ensure that the graphs
were both precise and accurate, the tester wore the
rig tightly around their waist and performed the
motions evenly without excessive variance
(analyzing variance is needed to make a robust
program that can account for it). To make the
graphs easily comparable however, the same
number of steps would be performed for each
motion for a similar time interval.

The first set of training data that was taken
did not display any obvious indications that could
be used for data analysis. This data was too coarse
and the sampling rate was changed from 100 to 50.
Another set of data was taken using a camera and
with a new sampling rate in hopes of being able to
match the stride with the plotted waveforms. We
were then able to conclude that the peaks in the
waveforms occurred when the feet contacted the
ground. Through several more trials, we adjusted
the baud rate down to 5. A new tester was
designated to collect 3 sets of each, normal walk,
stair ascent, and stair descent. This resulted in the
high quality data being eventually used for
analysis.

After acquiring the data from the
SensorTile, we uploaded the csv format to an excel
spreadsheet for normalization. For each data set
(acceleration x, y, and z, and gyroscope x, y, z) we
determined the mean of the absolute values of the
set and divided the original values by that mean to
obtain the normalized values. Using the
normalized values, we found that the waveform
pattern was more distinguished and it was easier to
identify features within the waveforms.

MatLab Graph Analysis

Figure 1: Each graph plots the values of our top 3
features along with the best data for ascending and

descending we could find.



Once the three gaits were obtained, we
created graphs to qualitatively and quantitatively
compare the gaits so as to identify potential
features. We analyzed features on the respective
graphs such as the average, peak height, the
average troph height, the overall average value,
and the amplitude of the waveform. To determine
which features we would use in our classification
model, our goal was to find the feature that had the
most distinct differences among different graphs.
It is was then discussed that it would be easier to
compare all the sensor values for mathematical
relationships if:

1. Each set of data was matched to have a
similar start and end point as the “normal
walk” data set for a better comparison of
the waveform by time.

2. The means of each of the 6 sensor values
was taken across the “normal walk value”.
The means were then used to divide each
of the other sensor values in order to make
all data relative to normal walk.

This would still retain the shape of each graph but
allow for better comparisons to be made such as
with acceleration and gyroscope values. We
decided against using time as the feature, because
we found that we could find patterns in the graph
without having to use the time interval. The most
robust feature that we found was the means of
mean peak value. In other words, we found
multiple mean peak values within a set, over a set
time interval, and then calculate the mean of those
means. The other feature we found was the vertical
translation of the waveform graphs. We found that
the waveform graphs for ascent vs normal walk
and descent vs normal walk for acceleration z was
simply a vertical translation, either up or down,
from the normal walk graph.

Choosing a Dynamic Decision Tree
Over a Neural Network

Most importantly, we were able to
determine that a significant amount of the motion
classification can be done through a decision tree
structure. Such a structure can differentiate
between level or non-level walk. Features we have
derived through extensive testing include finding
the means of mean peak value matrices.

We decided to utilize a dynamic decision
tree model for our classification algorithm. This
differs from a typical decision tree as it will have
values that can be adapted to a specific person
based on a training phase in which data is
acquired. The main similarity though is that it will
classify the motions based on predetermined true
or false conditions rather than nodes and error like
a neural network. Initially, we decided that we
were going to use a neural network with 3 distinct
features obtained from the data. However, when
analyzing the data we found direct relationships
between the behaviors of the graphs and the
specific motions. When testing both the neural
network model with the two features we had found
and the dynamic decision tree that used the peaks
in the graphs as its inputs, we found that the
dynamic decision tree model was more robust and
gave a higher classification accuracy than the
neural network. Additionally, by using the
dynamic decision tree, we can use values extracted
from data collected during a training period rather
than just hard coded (constant) values.

Setting up the Algorithm Program

Along with using MatLab, we also
decided to write analysis programs to help us find
features that we could not easily spot or determine.
We chose to write our code in C using Xcode. We
developed the code to better suit our needs and
more efficiently find features with less work
needed from our part. At first, we had to use CSVs
which we had already normalized on Google



Sheets (as we did when using MatLab). However,
we soon developed the system to perform the
normalization itself and to need no preprocessed
input except the raw CSVs which were recorded
during training.

Upon finding potential features, we then
decided to first test them using an algorithm on
Xcode. We made sure to create the algorithm such
that it would exactly mirror what we would create
on SystemWorkbench. The only difference with
the Xcode algorithm was that it would receive
pre-recorded data stored in files while the
SystemWorkbench algorithm would record its own
data before analyzing it. Also when developing the
Xcode version of the algorithm, we made sure to
write the code in a fashion that we could easily
make it not only readable, but also modifiable.

To write our code on SystemWorkbench,
we just translated what we wrote in Xcode. We
also wrote the necessary terminal print and LED
code in order to ensure that the system is
user-friendly. When initial problems arose when
transitioning between the two systems (from
Xcode to SystemWorkbench), we would isolate the
problem in SystemWorkbench and then see how it
was implemented in our Xcode algorithm. Then,
based on the similarities and differences between
the two systems, we would determine the proper
fix.

When transferring the code from Xcode to
SystemWorkbench, an error arose in terms of
storage: while transitioning from feature finding to
algorithm writing, although we removed the axes
we did not need, the code setup required that we
save the arrays of each axis prior to its analysis.
This meant storing several arrays with thousands
of elements. To solve this problem, we decided to
immediately analyze the collected data rather than
storing it. This way, we could reuse just one two
dimensional array for each motion rather than
having multiple to store the data of the multiple
motions.

Motion Classification Algorithm
Testing and Testing Method For

Extremes

To test the motions, we would first
perform the training period and then multiple sets
of the three motions. The first version of the
dynamic decision tree had an extremely low
tolerance. It was only able to correctly classify
motions if they were done almost exactly like the
set values recorded during the transition period,
meaning the feature did not have enough room to
account for variation. After testing the system and
reviewing the results, we determined that in the
following iterations we would need to implement
functions that handled edge cases. We invented a
“smooth or rough” system that dealt with two
types of extremes in our gait. Testing procedures
would happen like normal, but the motion would
change. Smooth gait was regular, slow, and evenly
timed. Our decision tree should be able to
recognize these motions to a reasonable degree of
certainty as this was in the first iteration. Rough
was fast and unevenly timed. Since our system is
based on comparing data to a “normal,” uneven
movements give data that is too noisy to process.
At the moment, we are yet to write a robust
enough noise filtering algorithm, or find one that
suits our needs. However, that version of the
system often failed to classify motion properly
regardless of it being performed smoothly or
roughly. We were getting consistently incorrect
results with both. Out of our three gait
classifications—walking, ascent, and
descent—walking was getting correctly classified
almost all of the time. This told us that our job for
classifying walking was largely done, but we
needed to find more robust features that classified
between ascent and descent.



Improvements Made to the
Algorithm

After testing the system through the
“rough and smooth method,” we noticed that
although Normal Walk was properly being
classified, the system was consistently being
inaccurate in differentiating between Stair Ascent
and Stair Descent. After further testing, we
determined that we would have to replace the
classifying feature for Ascent and Descent.

Rather than solely relying on the AX
feature, we created a new feature that is based on
the raw AZ values (not normalized). We were able
to determine that we could accurately classify the
New Motion as Ascent or Descent depending on
which way the AZ values leaned (if the average
was closer to that of Ascent, we would classify the
motion as Ascent.)

SystemWorkbench Problems

While engaging in the testing and
refinement of our decision tree classifier, we
experienced software-breaking System Workbench
errors. This put a halt to our progress for a short
period, for the frequency of these errors and their
severity was entirely random. Many times, System
Workbench needed to be restarted or even
completely reinstalled. Still, the errors would
persist. In addition, the error messages were
always cryptic and vague, which made it
impossible to debug. We even considered moving
the entire project to the new CUBE IDE at one
point, as we suspected that System Workbench was
simply showing its age and little could be done for
our problem. We were able to avoid this issue by
running System Workbench on a completely
different device on a different network. We ended
the rest of the testing and refinement of our final
product on this new device.

Accuracy/Results

As mentioned earlier in the testing section,
the algorithm was tested for smooth (regular)
walking motions and for rough motions. Smooth
motion is best identifiable as motion at a regular,
smooth pace, whereas “rough” motion is at a faster
pace than normal walking and harder jolts.

Our system works best with 90+%
accuracy when the motions performed are smooth.
When rough motion is performed, our system
correctly classifies the motion with 75% accuracy.

How to Use the System

First attach the belt to your waist such that
the wires coming out of the STM board towards
your right side. (see picture below) Center the
STM board on the middle of your waist. Enter the
System Workbench IDE with the imported
program files. Go to Project, then Clean. Clean all
Projects. Then enter the main folder and click on
DataLog to highlight it Then go to Project →
Build Project. Then go to Run→ Debug As and
select the one with the blue icon on the left and
says “Ac6 STM32 C/C++ Application”. Then run
the program by pressing the green play button on
the debug page. When the orange LED on the blue
SensorTile board turns on, perform a normal
walking motion (walking on level ground). Stop
when the light turns off and prepare for the next
motion, stair ascent. When the light turns on again,
start walking up stairs at a walking pace. Once the
light turns off, prepare for the next motion, stair
descent. When the light turns on, walk down the
stairs until the light turns off. At this point, the
training period is now complete. The user can now
perform whichever motion from above, along with
standing still, during each period. After each
period, the program will classify the motion that
was performed and display it on the terminal
screen, and also through blinks from the LED. 1, 2,
3, and 4 blinks correlate with stand still, normal
walk, stair ascent, and stair descent respectively.



When the user wishes to stop the system, they can
simply press the red stop button, or perform 3
stand stills in a row.

Further Improvement

The algorithm code is set up such that
changes can easily be made. One method through
which we ensure this is by making use of the
“#define” feature. By doing this, one
experimenting with this code can simply change a
value for a specified property of the algorithm at
the line of definition. This has the effect of a
variable, but does not take up the storage space
that a variable would.

The features we found can be further
developed into input nodes for a neural network.
This way, rather than relying on true or false
conditions, the code can weigh the strength of the
features to classify the motion, thus making the
system significantly more robust. Additionally,
other features can be explored, such as vertical
displacement and periodic gait motion without the
reliance of time. Through further development, this
system can detect far more than different gaits and
push the boundaries of motion detection and
measurement.

Links to the Githubs:
To see the all the development code used to make
the algorithm:
https://github.com/rtabrizi/STMotionExploration

To see the actual algorithm code itself and also
the data acquisition code:
https://github.com/ArunanElamaran/STM_Walk
_Motion_Classification

Figure 4: This features the orientation of how we
attached the ST board to the belt.

.

Figure 2: This photo shows more closely the way
that we got the board to stay firmly in place even

while motions were being performed.

Figure 3: We placed the rig in the center of our
front side on our hips.

https://github.com/rtabrizi/STMotionExploration
https://github.com/ArunanElamaran/STM_Walk_Motion_Classification
https://github.com/ArunanElamaran/STM_Walk_Motion_Classification

