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Figure 1. Veggie World. Veggie World lets you Veggify 3D scenes using Gaussian Splatting and without any diffusion or neural-based
extensions. Examples of the ‘Veggifying’ method applied to various 3D scenes. Please refer to the corresponding file submissions for the
animations. (a) DALL-E, the crown jewel of BAIR. (b) Rohan’s water bottle. (c) The bowl of apples in BWW8, surprisingly with apples
in it. (d) A bulb of garlic moments before Rohan’s housemates made pasta with it.

Abstract

We present Veggie World, a method for rasterizing 3D001
scenes using any set of 3D assets, in our case, vegeta-002
bles. Veggie World builds off Nerfstudio’s Gaussian Splat-003
ting library to Veggify 3D reconstructions through our Veg-004
gie Regularization techniques during training, and render005
our Veggie Worlds using Blender without the need for diffu-006
sion or other neural-based extensions. In addition to visu-007
ally pleasing Veggified renders of real-world scenes, Veggie008
World also poses an interesting research question on the im-009
portance of texture and 3D structure in image classification.010

1. Introduction 011

3D reconstruction has seen considerable advancements in 012
recent years, enabling seamless 3D renders of scenes with 013
as little as 10 seconds of footage. Most recently, neu- 014
ral radiance fields (NeRFs) [6] and Gaussian Splatting [3] 015
have produced markedly high-fidelity 3D reconstructions 016
that outperform classical 3D rendering techniques. Open 017
source frameworks like Nerfstudio [8] have enabled users 018
to seamlessly use such 3D reconstruction approaches, em- 019
powering academic and online communities to creatively 020
build their own extensions as they wish. 021

Veggie World utilizes the Guassian Splatting implemen- 022
tation within Nerfstudio to create visually-pleasing ‘Veggi- 023
fied’ 3D reconstructions of scenes. Our method involves op- 024
timizing 3D Gaussians to take on vegetable shapes through 025
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our own ‘Veggie’ loss. Additionally, we implement our026
own ‘Veggie’ dropout that prevents an excessive number of027
Guassians from becoming the same vegetable type. We ex-028
plore the effect of this dropout in our rendered results, as029
well as how Veggification affects image classification and030
reveal several interesting insights.031

2. Related Work032

Neural Radiance Fields (NeRFs) In recent years, NeRFs033
have emerged as the defacto method for 3D scene recon-034
struction from 2D images. NeRFs perform volumetric scene035
rendering by using a differentiable ray tracing procedure:036
the associated 3D coordinate {x, y, z} and viewing direc-037
tion {ϕ, θ} for all samples along the ray are predicted using038
an MLP and accumulated to predict the RGB for the pixel039
corresponding to this ray, which is then used in a reconstruc-040
tion loss to measure the difference between the predicted041
pixel RGB and that of the training image.042

Although NeRFs yield high fidelity scene reconstruc-043
tions compared to prior works, the training and inference044
of these networks are prohibitively expensive, as an MLP045
forward pass must be computed for every sample along a046
ray and for all rays in a training batch. Furthermore, NeRFs047
remain relatively less interpretable due to its reliance on an048
MLP for predicting samples, making downstream tasks like049
neural style transfer and object editing difficult.050

3D Gaussian Splatting Instead of representing a scene051
using NeRF’s ray-tracing sampling technique, (kerbl et al)052
reconstruct scenes using 3D Gaussians and yield consider-053
able rendering speedup and fidelity improvement. 3D Gaus-054
sians are initialized from a sparse point cloud produced by055
SfM [7] and have an associated mean (position), covariance056
(axis lengths), and opacity. They demonstrate that Gaus-057
sians are a suitable representation for 3D reconstructions as058
each Gaussian can be used to represent both high and low-059
level scene features, and can be coalesced into even more060
Guassians as well as combined with other Gaussians. Each061
3D Gauassian is projected into 2D then, using a tile-based062
rasterization technique that is differentiable, Gaussians are063
sorted by distance and undergo alphaα-blending to render064
any arbitrary view. Gaussian Splatting yields quicker train-065
ing and inference than NeRFs due to the tile-based raster-066
ization used as opposed to NeRF’s ray tracing approach.067
Notably, because each 3D Gaussian is associated with a po-068
sition in world coordinates, such scene representations are069
conducive to downstream geometric tasks that involve us-070
ing pre-training or jointly training Gaussian Splats. For the071
same reason that 3D Gaussians are an optimal representa-072
tion for 3D reconstructions as discussed in the original pa-073
per, they are also a natural representation for Veggified 3D074
worlds, as we can associate each Gaussian with a vegetable075
and effectively Veggify the world.076

Figure 2. Veggified Pixel Enjoyers. Among other items, Veggie
World can Veggify humans! In our analysis with human evalua-
tors, humans are still able to gather who the people are even after
Veggification. Please refer to the corresponding file submission
for the animation.

Stylized 3D Scene Reconstructions Because of their 077
high-fidelity scene reconstructions, NeRFs and Gaussian 078
Splatting have enabled many creative applications that gen- 079
erate visually-pleasing alteration to these 3D represen- 080
tations. InstructNerf2Nerf [2] enables instruction-based 081
scene editing using iterative diffusion-based dataset edit- 082
ing during training. Although such an approach can be 083
used to ‘Veggify’ a 3D scene, this would in practice require 084
an expensive forward pass for each image through a diffu- 085
sion network and does not guarantee consistency across all 086
training views. Additionally, such an approach remains re- 087
liant on the slow MLP-based rendering of NeRFs, failing 088
to provide the rich and immersive experience that Veggie 089
World strives to provide. Instead of iterative dataset updat- 090
ing, StyleRF [4] makes transformations directly to the fea- 091
ture space of the radiance field through their Deferred Style 092
Transformation (DST) that enables multi-view consistency 093
during style transfer. Nonetheless, this approach still re- 094
quires a neural extension to stylize the 3D scene, which can 095
be prohibitively expensive depending on the application. 096

As for Gaussian-based scene stylization, StyleGaussian 097
[5] proposes a method for style transfer of 3D reconstruc- 098
tions with Gaussian Splatting. The method involves taking 099
a pre-trained 3D Gaussian Splat and 1) embedding 2D VGG 100
image into the scene and assigning each feature embedding 101
an associated learnable feature parameter fp ∈ RD, 2) using 102
the input syle image IS to further transform the transformed 103
feature fp, and 3) RGB decoding in which the transformed 104
image features of the 3D Gaussians are converted back to 105
RGB. In practice, such an approach could be used to veggie 106
scenes as we do, although our method only involves a sim- 107
ple modification to the training loss and does not involve 108
additional training of feature embeddings after training the 109
3D reconstruction. 110

3. Methodology 111

The veggification process involves two steps. First, we train 112
a Gaussian splat using a regularization so the Gaussians op- 113
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timize to have similar scales to their closest vegetable. We114
refer to a Gaussian’s standard deviation as its scale because115
visually, the majority of visible Gaussian is within 1 stan-116
dard deviation from its center. Second, we run a Blender117
script that takes each Gaussian and replaces it at its position118
with its closest vegetable at the correct scale and rotation.119

3.1. Veggified Gaussian Splatting Training120

We augment Gaussian splatting by adding a component to121
the loss function in order to make the Gaussians more ele-122
gantly match vegetables.123

3.1.1 Veggie Regularization and Loss124

In order to regularize a Gaussian to its nearest vegetable, we125
first need a metric to determine how close a Gaussian is to126
a vegetable. The metric we choose, Dg,v , is the norm of the127
difference between each ratio of the standard deviations of128
the Gaussian and the ratio of the scales of each vegetable.129
For the Gaussian, let σ be the scale/standard deviation and130
let Rg be the scale ratio. For the vegetable, let S be the scale131
and let Rv be the scale ratio.132
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Dg,v = ||Rg −Rv||2 (4)137

To get the closest vegetable to each Gaussian, v∗g , we138
simply choose the vegetable with the minimum distance:139

v∗g = argminv{Dg,v} (5)140

From here, we add the distance from each Gaussian to its141
closest vegetable to the loss function as the scale loss.142

Lscale = ||Dg,v∗
g
||2 (6)143

We only add the veggie loss to the loss function after 100144
iterations of training to allow the Gaussians to take some145
shape on their own.146

3.1.2 Rotation Invariance147

One issue we faced is that the vegetable scales are not ro-148
tation invariant. For example, if we have a long and skinny149
Gaussian:150

σ =

 1
2
10

 , Rg =

0.50.1
0.2

 (7)151

we’d probably want that to match to a carrot as carrots are 152
long and skinny vegetables. What if, however, the carrot 153
asset we have has scales and ratios as follows: 154

S =

 3
15
1.5

 , Rv =

0.22
10

 (8) 155

The scale ratios are totally different even though if we had 156
just permuted the scales of the vegetable to [1.5, 3, 15] the 157
ratios would be identical. So, we do exactly this! For each 158
vegetable, we get all 6 permutations of the scale to achieve 159
this rotational invariance. 160

3.1.3 Veggie Dropout 161

Another issue we faced is that often, we get a very sparse 162
distribution of what vegetables are used. In particular, we 163
found that there are way more carrots than other vegetables 164
because high frequency features are often represented with 165
lots of long and thin Gaussians. While we do want to op- 166
timize the splat to represent the 3D structure well, we also 167
want to have a wide assortment of vegetables in the result. 168
To achieve this we implement veggie dropout. If more than 169
1
6 of the Gaussians are assigned to a single vegetable, v′, we 170
set ∀g, Dg,v′ = ∞ which forces all the Gaussians to reg- 171
ularize to a different, slightly less close-in-scale vegetable. 172
This makes our veggie distribution way more uniform (as 173
shown in ablations). 174

3.2. Veggified Gaussian Splatting Rendering 175

We export the splat as a pointcloud where each Gaussian 176
has a point with attributes of location, scale, rotation, opac- 177
ity, and veggie index. Then, in a blender script we take each 178
Gaussian and place the correct vegetable at the location ro- 179
tated at the direction that the Gaussian is rotated. We scale 180
the location so that the vegetable is able to capture space 181
that the Gaussian did at points further than one standard de- 182
viation from it’s mean, effectively enlargening the hull of 183
the object. 184

4. Results 185

In addition to Veggifying different scenes, we also perform 186
experiments to observe the extent to which texture affects 187
an ImageNet classifier’s outputs, as well as ablations to ob- 188
serve the effect of Veggie Dropout. On average, we observe 189
roughly 300 images per scene used for 3D reconstruction. 190

4.1. Veggie World Renders 191

Figure 1 displays the main results of our work across a va- 192
riety of scenes. Upon applying COLMAP, training in Nerf- 193
studio, and rendering the splat export in Blender, we suc- 194
cessfully ’Veggify’ scenes. In our experience, we observed 195
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Figure 3. Veggie Dropout Impact. Top: garlic results without Veggie dropout. We see that carrots and sweet peppers dominate with
over 70,000 and 50,000 occurances respectively. We attribute this to the many high-frequency features needed to model the edges of the
garlic bulb, resulting in many Gaussians transforming to these vegetables during training. Bottom: results with a Veggie dropout ratio
of 1

6
. Upon applying Veggie dropout, carrots and sweet peppers no longer dominate the distribution of vegetables and the distribution of

vegetable counts becomes less more uniform. The diverse distribution of vegetables yields object surfaces that are more covered/dense, as
the small high-frequency carrots and sweet-peppers no longer dominate the distribution, allowing other larger vegetables to populate the
scene. Note: we felt that the peach asset was distorted and manually opt to exclude peaches from our Veggified outputs.

Figure 4. Veggie World Models High Frequencies. In order to
model high-frequency features within scenes, Veggie World opti-
mizes Gaussians into carrots and sweet peppers due to their shape.
In this scene, the thin, flat sides of the bowl are modeled with an
abundance of carrots and sweet peppers to accurately capture the
high-frequency features.

Figure 5. Veggified Controller. A successful Veggification of
a video game controller. We observe a higher concentration of
vegetables around the edges of the object, preserving the object’s
overall structure.

the peach assets to be heavily distorted and opted to auto- 196
matically exclude these from our rendered outputs. 197
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4.2. Classification Analysis198

Inspired by the work presented in [1] which asserts that Im-199
ageNet classifiers are biased towards textures rather than200
image content or other signals, we experiment applying an201
ImageNet-pretrained ResNet50 and observing changes in202
prediction scores upon Veggifying the scene. In this ex-203
periment, we naively perform classification on an object be-204
fore and after Veggification, paying attention to top-3 output205
scores as well as the score associated with the actual object206
(if applicable). Because most of the in-the-wild objects we207
record do not correspond to actual labels in ImageNet, we208
use text embedding comparison via HuggingFace Sentence-209
Transformer’s ‘all-MiniLM-L6-v2’ model. In doing so, we210
are able to fetch the 3-closeset labels based on text, and then211
observe the ResNet50 prediction scores for these labels be-212
fore and after Veggification. Our initial results are mixed.213
As shown in the project presentation, in some cases, the214
classifier struggles to classify the original input image, let215
alone the veggified version of this object. Another inter-216
esting observation is how, because of the Veggification pro-217
cess, we often lose many important details about the main218
object itself, and the classifier instead attends to the struc-219
ture of the scene. For instance, the Veggified bowl of apples220
loses virtually all notion of ’apples’ and yet the classifier is221
still able to retrieve ‘mixing bowl’ in its top 3 prediction la-222
bels. More concretely, when looking at table 1, we see that223
the score associated with ‘soup bowl’ and ‘mixing bowl’ in-224
creases substantially upon Veggification. Whereas the Ima-225
geNet labels for the un-Veggified image are associated with226
the fruit in the bowl, we see that the model’s outputs on the227
Veggified scene are far more concerned with the broader se-228
mantics of the scene, that being the presence of a bowl. As229
for the other results, we see that the model still manages to230
allocate non-zero probability to the labels associated with231
the original object, which is to say that the model is perhaps232
still able to make sense of the Veggified scene, albeit with233
very poor performance.234

Veggie World raises an interesting question on the impor-235
tance of structure and texture for image classification. To236
the human eye, our Veggified scenes are ones such that hu-237
man evaluators are typically able to predict what the original238
object was. In contrast, we observe that classifiers largely239
struggle to make sense of our Veggified outputs, which is240
to say that there is still a large gap to fill with respect to241
getting models to make sense of the world as we do. It242
also speaks to how limited supervised systems are in that243
they fail to make sense of out-of-distribution samples (e.g.244
our Veggified outputs) and are constrained to their train-245
ing set distribution. With more time, we’d like to explore246
how self-supervised classifiers and their associated features247
make sense of our Veggified outputs relative to their super-248
vised counterparts.249

Object 1-NN Label 2-NN Label 3-NN Label

Bowl Soup Bowl Mixing Bowl Microwave
Original 0.0000 0.0000 0.0000
Veggified 0.0097 0.0870 0.0008

Bottle Beer Bottle Bottle Cap Water Bottle
Original 0.0004 0.0001 0.0419
Veggified 0.0004 0.0007 0.0014

Sheep Old English Sheepdog Wool Shetland Sheepdog
Original 0.0028 0.0022 0.0001
Veggified 0.0001 0.0006 0.0000

Human Gorilla Organ Chimpanzee
Original 0.0000 0.0000 0.0004
Veggified 0.0000 0.0001 0.0000

Table 1. Veggification Effect on Image Classification. For
each object, we generate our own text label (e.g. ”sheep” for
DALLE) and fetch the 3 nearest labels using the ‘all-MiniLM-L6-
v2’ SentenceTransformer from HuggingFace. We then compute
the ResNet50 probability score for each of these labels before and
after Veggification. For instance, 1-NN refers to the closest text
label based, and 2-NN refers to the second-closest label.

4.3. Ablation Studies 250

For one of our ablation studies, we examine the effect of 251
Veggie Dropout on a scene. We originally added Veggie 252
Dropout upon noticing the trend in which thin vegetables, 253
namely carrots and sweet peppers, dominate the count dis- 254
tribution for many virtually all scenes. Upon further anal- 255
ysis, we determined this is because many Gaussians are 256
needed to model the high-frequency edges of our scenes, 257
and these vegetables are a natural choice for representing 258
high-level features. To this end, we observe results be- 259
fore and after veggie dropout shown in figure 3. Most no- 260
tably, the scene with dropout appears much less sparse than 261
the scene without dropout, presumably because the scenes 262
without dropout have much more high-frequency vegeta- 263
bles which do not occupy much area in the 3D reconstruc- 264
tion. Upon applying dropout, the distribution of vegetables 265
more even and we see a much more diverse set of vegetable 266
counts, using vegetables with higher area to model the low- 267
frequency parts of the scene. 268

4.4. Limitations 269

In order to selectively Veggify only the object within a scene 270
and not the background, we must create a bounding box 271
in the Nerfstudio viewer that is sufficiently small enough 272
so-as-to not include any background point cloud elements. 273
Future extensions may include support within Nerfstudio to 274
remove undesired Gaussians using a lasso tool of sorts. 275

We are also compute-constrained when rendering our 276
Veggified worlds in blender. Because of this, most of our 277
results are object-centric and we are unable to Veggify en- 278
tire rooms with backgrounds included. With more compute, 279
we would love to see what a true ‘Veggie World’ would look 280
like. This is also why we are unable to render the gifs for 281
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all shown scenes.282
Additionally, our method relies on scaling the Gaussians283

in Blender (both the vegetable scales and the coordinates)284
which varies from scene to scene. We’d like to come up285
with a heuristic of automating this process to further stream-286
line our pipeline.287

Lastly, we anticipate some difficulty applying our ap-288
proach to objects other than vegetables: the selection of 3D289
assets must be diverse in shape and color in order to prop-290
erly represent scenes without compromising the geometry291
of the underlying scene. For instance, a 3D pastry collec-292
tion not only lacks diversity in color and texture, but there293
is likely not a pastry that can reasonably represent high-294
frequency features without the need to squish/distort the295
pastry (and its associated Gaussian) into a weird shape.296

5. Conclusion297

In this work we presented Veggie World, an non-neural aug-298
mentation to Gaussian Splatting that allows users to Veg-299
gify their 3D worlds as a fun twist. By using Nerfstu-300
dio’s Gaussian Splatting framework, Veggie World opti-301
mizes Gaussians to take on the shape of a variety of vegeta-302
bles which are then rendered in Blender to yield visually-303
pleasing results while maintaining the structural integrity304
of the scene. Veggie World demonstrates the versatility of305
Gaussian Splatting and the ability to create stylisitic 3D re-306
constructions without the use of extensive diffusion models307
or iterative dataset updating. Additionally, we share pre-308
liminary analysis on how texture-augmentation like Veggie309
World can affect image classification, and propose future310
directions of further exploring the extent to which structure311
and geometry vs texture affect classifiers commonly seen312
in benchmark leaderboards and everyday applications. We313
hope Veggie World brings the reader as much enjoyment as314
it did to us!315
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Figure 6. Veggie World Up Close. DALL-E the beloved BWW8 sheep Veggified. Please refer to the corresponding file submission for the
animation.
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